آخر الأخبار
المضافة
مضافه
Additive - Additif
هذا البحث محال الى البحث [ الضمائم في الكيمياء ]
- التصنيف : الكيمياء و الفيزياء - المجلد : المجلد الثامن عشر، طبعة 2007، دمشق - رقم الصفحة ضمن المجلد : 835 مشاركة :
متنوع
البحوث الأكثر قراءة
هل تعلم؟
- - هل تعلم أن الأبلق نوع من الفنون الهندسية التي ارتبطت بالعمارة الإسلامية في بلاد الشام ومصر خاصة، حيث يحرص المعمار على بناء مداميكه وخاصة في الواجهات
- - هل تعلم أن الإبل تستطيع البقاء على قيد الحياة حتى لو فقدت 40% من ماء جسمها ويعود ذلك لقدرتها على تغيير درجة حرارة جسمها تبعاً لتغير درجة حرارة الجو،
- - هل تعلم أن أبقراط كتب في الطب أربعة مؤلفات هي: الحكم، الأدلة، تنظيم التغذية، ورسالته في جروح الرأس. ويعود له الفضل بأنه حرر الطب من الدين والفلسفة.
- - هل تعلم أن المرجان إفراز حيواني يتكون في البحر ويتركب من مادة كربونات الكلسيوم، وهو أحمر أو شديد الحمرة وهو أجود أنواعه، ويمتاز بكبر الحجم ويسمى الش
- هل تعلم أن الأبسيد كلمة فرنسية اللفظ تم اعتمادها مصطلحاً أثرياً يستخدم في العمارة عموماً وفي العمارة الدينية الخاصة بالكنائس خصوصاً، وفي الإنكليزية أب
- - هل تعلم أن أبجر Abgar اسم معروف جيداً يعود إلى عدد من الملوك الذين حكموا مدينة إديسا (الرها) من أبجر الأول وحتى التاسع، وهم ينتسبون إلى أسرة أوسروين
- - هل تعلم أن الأبجدية الكنعانية تتألف من /22/ علامة كتابية sign تكتب منفصلة غير متصلة، وتعتمد المبدأ الأكوروفوني، حيث تقتصر القيمة الصوتية للعلامة الك
اخترنا لكم
السنونو
السنونو السنونو (الخطاف) swallow طائر ينتمي إلى فصيلة السنونيات (أو الخطافيات) Hirundinidae، رتبة عصفوريات الشكل (الجواثم) Passeriformes، صف الطيور Aves. الصفات العامة الشكل (1) السنونو الشائع Hirundo rustica طيور السنونو صغيرة القد، ممشوقة، إنسيابية الجسم ورشيقة، أجنحتها طويلة ومدبَّبة، وأذيالها مشقوقة، طويلة في بعض الأنواع وقصيرة في أنواع أخرى. لها منقار قصير وعريض عند قاعدته.
العلاقة الثنائية
العلاقة الثنائية المجموعة set، يعد مفهوم المجموعة من المفاهيم الأساسية في علم الرياضيات. وحيث إن كلمة مجموعة هي كلمة أولية في هذا العلم، وهي ببساطة جماعة من الأشياء، كل شيء من هذه الأشياء يدعى عنصراً، ووجوده فيها يوصف بالانتماء لها. لذا فليس للمجموعة تعريف، وإنما تُعرَف بعناصرها. فإذا كان a عنصراً في مجموعة A، قيل إن a ينتمي إلى A، ورمز لذلك بـ aÎA، وإذا لم يكن b عنصراً في المجموعة A، قيل إن b لا ينتمي إلى A، ورمز لذلك بـ bÏA. مثلاً مجموعة أيام الأسبوع هي {الجمعة، السبت، الأحد، الاثنين، الثلاثاء، الأربعاء، الخميس} ومجموعة أشهر السنة الهجرية هي {محرم، صفر، ربيع أول، ربيع ثاني، جمادى أولى، جمادى أخرى، رجب، شعبان، رمضان، شوال، ذو القعدة، ذو الحجة}. مثال (1): إن مجموعة الأعداد الطبيعية هي N={1,2,3,…} فالعدد 17ÎN بينما العدد -2ÏN. ومجموعة الأعداد الصحيحة هي Z=[…,-3,-2,-1,0,1,2,3..} وكل من العددين ينتمي إلى هذه المجموعة، أي 17ÎZ, -2ÎZ. وكذلك بفرض A={xÎN: x³9} فإن 5ÏA بينما 11ÎA.