logo

logo

logo

logo

logo

الهدروجين

هدروجين

Hydrogene - Hydrogène

الهدروجين

 

الهدروجين hydrogen غاز لا لون له ولا طعم ولا رائحة، رمزه الكيمياوي H وهو أبسط عنصر معروف؛ إذ تتألف نواة ذرته من بروتون وحيد، وبنيته الإلكترونية 1S1، يمكن أن يصنف ويوضع في فصيلة المعادن القلوية[ر: القلويات] لأنه يحوي إلكتروناً واحداً في طبقة التكافؤ يمكن أن يتخلى عنه، أو مع فصيلة الهالوجينات لأن له القدرة على أخذ إلكترون واحد وذلك بالمشاركة على الأغلب.

ولا يضم الهدروجين إلكتروناً آخر إلى مداره مكوِّناً مركّباً شاردياً إلا في حالة واحدة فقط، وذلك عندما يتحد مع معدن قلوي أو قلوي ترابي، لتكوّن هدريدات مثل NaH وCaH2؛ إذ تغلب على هذه المركبات الصفة الأيونية (الشاردية).

وجوده في الطبيعة

يحتل الهدروجين المرتبةَ التاسعة بين العناصر الموجودة على سطح الأرض من حيث الوفرة إذا رُتِبت العناصر تبعاً للنسبة الوزنية، أما إذا كان الترتيب تبعاً لعدد الذرات فإنه يحتل المرتبة الثالثة بعد الأكسجين والسيليكون. ومعظم هذا الهدروجين موجود على شكل ماء، ولكن قسماً كبيراً منه يوجد في النفط والمادة الحية بمختلف أنواعها. أما في الصخور فالهدروجين نادر نسبياً إلا ما وجد منه على شكل ماء تبلور مع الأملاح أو ممتصاً من قبل الغضار.

على الرغم من أن هذا العنصر عرف منذ نحو القرن الخامس عشر إلا أن العالم الإنكليزي كافنديش[ر] Cavendish هو أول من اكتشفه ودرسه دراسة علمية عام 1781؛ إذ استحضره بفعل حمض كلور الماء أو حمض الكبريت على المعادن، كما بيَّن أن الماء هو الناتج الوحيد من حرق الهدروجين في الهواء، علماً أن جيمس واط James Watt أعلن أنه هو الذي حصل على ماء من احتراق الهدروجين في الوقت نفسه الذي حصل عليه كافنديش.

أما الاسم «هدروجين» فقد أطلقه على هذا الغاز لافوازييه[ر] مبيِّناً أنه يولِّد الماء عند احتراقه.

يرافق الهدروجينَ في مركّباته جميعها النظير isotope المدعو ديتريوم deuterium؛ واسمه يعني (الثاني) باليونانية، ويرمز له بـ D بنسبة مول ديتريوم لكل 7000 مول هدروجين عادي. اكتشَف هذا النظير الأميركي أوري Urey عام 1932. تنبع أهمية هذا النظير من استعماله مهدئاً للنترونات في المفاعلات النووية، يختلف هذا النظير عن الهدروجين العادي باحتواء نواته على نترون إضافة إلى البروتون في الهدروجين العادي. وهناك نظير آخر للهدروجين يدعى التريتيوم tritium، واسمه يعني (الثالث) باليونانية ويرمز له بالحرف T. تحوي نواته نترونين إضافة إلى البروتون، وقد اصطنعه العالم ألفاريز Alvarez في جامعة كاليفورنيا بقذف الديتريوم بوساطة النترونات:

ونسبة الهدروجين الحر في جو الأرض لا تتجاوز 0.01٪ لخفّته، أما في بعض الكواكب الأخرى فإنه يعتقد بأنه المكوِّن الرئيسي لجوها، وذلك لأن جاذبيتها أقوى من جاذبية الأرض. ويعتقد أن الهدروجين - في كثير من النجوم بما فيها الشمس - هو المنبع الرئيسي للطاقة الإشعاعية التي تنتج عن اندماج ذرات الهدروجين وتكوين الهليوم[ر: الاندماج النووي].

تحضير الهدروجين

إن العامل المهم في تحضير أي عنصر في المختبر هو سهولة التحضير، أما في الصناعة فالكلفة هي العامل الرئيسي.

أولاً - في المختبر

أ - فعل الحموض الممددة على كثير من المعادن metals، مثل التوتياء والحديد والمغنزيوم والقصدير

ولا تصلح المعادن القلوية والقلوية الترابية في مثل هذه التفاعلات؛ لأنها تطلق الهدروجين بشدة تجعل من الصعب السيطرة على التفاعل. أما المعادن الأخرى مثل الفضة والذهب والزئبق والنحاس فهي لا تطلق الهدروجين بتفاعلها مع الحموض[ر: الأكسدة والإرجاع]. ولا يستعمل حمض الآزوت في هذا المجال بسبب قوته المؤكسِدة.

ب - فعل هدريدات المعادن القلوية والقلوية الترابية (ماعدا المغنزيوم) على الماء:

وقد يكون التفاعل السابق عنيفاً خصوصاً في حال استعمال البوتاسيوم والروبيديوم والسيزيوم.

جـ-  فعل بخار الماء على بعض المعادن الأخرى:

يعود ذلك إلى أن هنالك بعض المعادن التي لا تتفاعل مع الماء بصورة محسوسة على الرغم من كونها أعلى من الهدروجين في جدول الترتيب الكهرحركي للعناصر، وذلك بسبب تكون طبقة من هدروكسيد المعدن تمنع استمرار التفاعل ولكن الحرارة الآتية من البخار تجعل هذه الطبقة مسامية ليأخذ التفاعل مجراه كما هو الأمر في المغنزيوم والحديد.

د - فعل بعض المعادن الأمفوتيرية amphoteric على الأسس:

هـ - التحليل الكهربائي لبعض المحاليل المائية الممددة:

ففي التحليل الكهربائي لمحلول ممدد من حمض الكبريت أو ماءات الصوديوم حيث التفاعل الإجمالي هو الآتي:

ينطلق الهدروجين حول المهبط والأكسجين حول المصعد، وتحتاج العملية إلى طاقة كهربائية عالية نسبياً، وذلك بسبب قوة الرابطة بين الهدروجين والأكسجين في جزيء الماء.

ثانياً - صناعياً

أ - بطريقة التحليل الكهربائي في المناطق التي تكون فيها الطاقة الكهربائية رخيصة. ففي معظم معامل اصطناع النشادر[ر] الموجودة بالقرب من مساقط المياه يستحصل على الهدروجين من تحليل محاليل مائية ممددة من حمض الكبريت أو هدروكسيد الصوديوم وذلك في خلايا تحليل مصممة على أساس فصل نواتج الكاتود (المهبط) عن نواتج الأنود (المصعد). أما التفاعلان الحاصلان على المسريين فهما:

وتتشكل كميات وافرة من الهدروجين محصولاً ثانوياً عند استحصال Cl2 وNaOH بالتحليل الكهربائي لمحلول ملح الطعام.

ب - إمرار بخار الماء المسخن فوق فحم الكوك المتوهج

يدعى المزيج الغازي الناتج غاز الماءwater gas، وهو ذو قيمة صناعية كبرى وقوداً[ر: غازات الوقود]. والتفاعل السابق ماص للحرارة ولهذا يجب أن يكون فحم الكوك متوهجاً حتى يندفع التفاعل نحو اليمين[ر: التوازن الكيمياوي].

وإذا كان المراد استعمال الهدروجين المستحصل من هذه العملية في أغراض كيمياوية فإنه يجب التخلص من CO، ويتم ذلك بإضافة بخار ماء جديد إلى المزيج الغازي الناتج:

وهو تفاعل ناشر للحرارة، ولذلك يفضَّل فيه استعمال درجات حرارة متوسطة والاستعانة بوسيط مثل الحديد أو النحاس لتسريعه. للتخلص من CO2 يمرَّر المزيج الناتج في وسط قلوي، أو يضغط ويبرَّد فينحل هذا الغاز عندئذ في الماء.

جـ - من مصافي النفط (البترول) أو من الغاز الطبيعي

يرافق عمليات التكسير المختلفة للحصول على الغازولين تشكل كميات كبيرة من الهدروجين. وتعدّ هذه الطريقة المصدر الرئيسي للحصول على الهدروجين في الوقت الحاضر. أما في المناطق التي يوجد فيها الغاز الطبيعي بكميات كبيرة فيمكن الحصول على كميات ضخمة من الهدروجين بالحرق الجزئي للميتان:

الخواص الفيزيائية للهدروجين

الكتلة الذرية النسبية 1.008، طاقة التأين 13.6 إلكترون فولط، الألفة الإلكترونية 72 كيلو جول مول-1، صيغته الجزيئية H2، نقطة الانصهار -259 ْس، ونقطة الغليان -253 ْس؛ مما يدل على أن قوى فان درفالس التي تربط بين جزيئاته ضعيفة جداً، الكتلة الحجمية في الشروط النظامية 0.09كيلوغرام/المتر المكعب، طاقة الرابطة H–H تساوي 436 كيلوجول، طول الرابطة H–H يساوي 74 بيكومتر. ينحل من الهدروجين في الشروط العادية 19.2سم3 في لتر من الماء، وهو أخف الغازات على الإطلاق، فهو أخف من الهواء بأربع عشرة مرّة، ولهذا فإن المناطيد تملأ به. بيد أن قابليته للاشتعال أدت إلى تفضيل الهليوم عليه[ر. الغازات الخاملة].

الخواص الكيمياوية للهدروجين

كهرسلبية الهدروجين 2.1، فهي وسط بين العناصر الكهرسلبية التي تميل إلى ضم إلكترونات إضافية وبين العناصر الكهرجابية التي تميل إلى التخلي عن بعض إلكتروناتها. ولهذا السبب فإن الهدروجين يرتبط في معظم مركّباته برابطة مشتركة مع العناصر الأخرى.

أ - اتحاده مع الأكسجين: مزيج الأكسجين والهدروجين مستقر عند درجة الحرارة العادية، ولكن زيادة الحرارة - مثل حصول شرارة مثلاً أو إشعال عود ثقاب - يؤدي إلى اتحادهما الذي ينشر نحو 58 كيلو حريرة/مول. فإذا وجد المزيج في مكان محصور أدى ذلك إلى حصول انفجار بسبب ارتفاع ضغط البخار الناتج في ذلك المكان. ويحصل الانفجار مهما كانت نسبة الهدروجين إلى الأكسجين في المزيج؛ وذلك بسبب كمية الحرارة الضخمة الناتجة، ولكن الانفجار يكون أشد كلما كانت النسبة بين حجم الهدروجين إلى الأكسجين أقرب إلى 2.

ب - مع الكبريت: تنقص حدة التفاعل بين الهدروجين وعناصر الفصيلة VIA بالانتقال من أعلى الفصيلة إلى أسفلها، ولذلك فإن الاتحاد مع الكبريت بطيء:

ولا يمكن دفع التفاعل نحو اليمين بالتسخين لأن التفاعل ناشر للحرارة، ولذلك فإن استحضار كبريتيد الهدروجين بهذه الطريقة غير عملي بتاتاً، ويستعاض عن ذلك بفعل الحموض المعدنية على كبريتيدات المعادن.

جـ - مع الهالوجينات: حدة تفاعل الهدروجين مع الفلور شديدة جداً تصل حد الانفجار حتى لو جرى التفاعل عند درجة حرارة الهدروجين السائل:

وتنتشر كمية من الحرارة قدرها 128 كيلو حريرة. وتفاعل الهدروجين مع الكلور أقل حدة؛ إذ يبقى مزيج من الهدروجين والكلور من دون تفاعل إذا لم يعرَّض للضوء أما إذا تعرض للضوء، فإنه ينفجر، ولكن ليس بشدة الاتحاد مع الفلور نفسها:

وتنتشر كمية كبيرة من الحرارة قدرها 44 كيلوحريرة.

ووجد أن وظيفة الضوء في التفاعل السابق هي تفكيك جزيئات الكلور إلى ذرات فعّالة:

التي تتفاعل مع الهدروجين مكوِّنة حمض كلور الماء. وبمعنى آخر فإن التفاعل (1) هو التفاعل الإجمالي، ويوضح التفكك السابق ميكانيكية التفاعل.

أما مع البروم فالتفاعل أقل شدة:

وتنتشر كمية حرارة قدرها 17كيلو حريرة. أما مع اليود، فالتفاعل غير كامل:

وتنتشر كمية من الحرارة قدرها 13 كيلو حريرة. وتعطي تفاعلات الهدروجين مع الهالوجينات خير مثال على تغير الفاعلية في فصيلة ما بتغير حجم ذرة العنصر.

د - مع الآزوت (النتروجين): يتحد الآزوت مع الهدروجين بصعوبة وفي شروط خاصة مكوِّناً غاز النشادر (الأمونيا)[ر: النشادر]:

ويعد هذا التفاعل أهم تفاعل للهدروجين.

هـ - مع الكربون: يتحد الهدروجين مع الكربون عند درجات الحرارة العالية معطياً الميتان:

الذي يؤلف القسم الرئيسي من الغاز الطبيعي المنطلق من الآبار البترولية. وتعود أهمية هذا الغاز إلى كمية الحرارة الكبيرة التي ينشرها باحتراقه مع الهواء أو الأكسجين:

وتنطلق كمية كبيرة من الحرارة قدرها 212 كيلو حريرة.

و - مع المعادن: يتحد الهدروجين مع معادن الفصيلة الأولى ومعادن الفصيلة الثانية (عدا المغنزيوم والبريليوم) مكوناً مركّبات بلورية ذات بنية أيونية يوجد فيها الهدروجين على شكل أيون سالب H-.

ز - مع المركّبات العضوية: يقوم الهدروجين بتفاعلات مع كثير من المركّبات العضوية، ويذكر منها:

الهدروجين الذري

ذرات الغازات التي تتألف من جزيئات ثنائية الذرة عموماً أكثر فاعلية بكثير من الجزيئات نفسها. فذرة الهدروجين H أشد فعالية من جزيء الهدروجين H2، وذرة الآزوت N أشد فاعلية من جزيء الآزوت N2.

يحضّر الهدروجين الذري من الهدروجين العادي، ولكن ذلك يتم بصعوبة بالغة، ذلك أن التفكك:

ماص للحرارة (103 كيلوحريرة/مول)، ولذلك فإنه من الضروري تسخين الهدروجين العادي إلى درجات حرارة عالية جداً كي يبدأ بالتفكك. ويُحصل على هذه الحرارة العالية بوساطة القوس الكهربائية، كما يمكن تأمين الطاقة الضرورية لهذا التفكك بالأشعة فوق البنفسجية.

يستخدم الهدروجين الذري للحصول على درجات حرارة عالية جداً وذلك باحتراقه مع الأكسجين في ما يدعى بمصباح torch الهدروجين الذري:

وتنتشر كمية كبيرة من الحرارة قدرها 303 كيلوحريرة. يمر الهدروجين الجزيئي بادئ الأمر خلال قوس كهربائية ما يؤدي إلى تفكك قسم منه يتحد مع الأكسجين في رأس المصباح.

إن الطاقة الكبيرة الضرورية لتفكك جزيء الهدروجين وكسر الرابطة المشتركة التي تربط بين ذرتيه تجعل من الهدروجين غازاً بطيء التفاعل نسبياً مع جزيئات العناصر الأخرى. وبمعنى آخر، فإن الطاقة التنشيطية للهدروجين مرتفعة جداً. وهذا هو السبب وراء استعمال المواد الوسيطة في التفاعلات التي يكون فيها الهدروجين أحد أركان التفاعل. وأفضل هذه المعادن الوسيطة معدنا النيكل والبلاتين، إذ يعتقد أن جزيء الهدروجين يتفكك إلى ذرتيه على سطح هذه المعادن، ثم يرتبط بذرات المعدن برابطة ضعيفة. وتكون النتيجة أنه يصبح أكثر فعالية وقدرة على التفاعل مع المواد الأخرى.

استعمالات الهدروجين

يستعمل الهدروجين وقوداً لمحركات الصواريخ الضخمة فقد جاء في نشرات أبحاث الفضاء الحديثة أن الهدروجين السائل يعطي، عندما يمزج مع الفلور السائل، دفعاً هائلاً للصاروخ لم يحققه أيّ وقود آخر. وجاء هذا الاستعمال نتيجة للتقدم العظيم الذي حققته الهندسة الكيمياوية منذ نهاية القرن العشرين إذ لا يخفى مدى الخطر الذي ينطوي عليه استعمال كميات ضخمة من الهدروجين السائل إذ تكفي شرارة صغيرة لإحداث انفجار هائل.

يستحصل أكثر من 20 مليون طن هدروجين سنوياً. يستخدم 50٪ منها في عمليات اصطناع النشادر، كما أن قسماً كبيراً منه يستخدم في اصطناع كيمياويات أخرى، مثال ذلك، الكحول الميتيلي CH3OH وفق التفاعل:

ويستعمل أيضاً في هدرجة الزيوت النباتية[ر: الهدرجة] للحصول على المرغرين والمنتجات البترولية وفي بعض عمليات الإرجاع، كما هي الحال في الحصول على التنغستن من WO3، ويستعمل الهدروجين في اللحام.

جرت أبحاث كثيرة في السنوات الأخيرة على الهدروجين لاستعماله وقوداً. فعندما يحترق الهدروجين في الهواء تنتج طاقة كبيرة، تتميز بنظافتها مما يحول دون تلوث البيئة. وقد صنعت سيارات يستعمل فيها الهدروجين وقوداً بدل البنزين (الوقود السائل المستعمل في السيارات). وقد يخطر على البال أن نقل الهدروجين من مكان إلى آخر خطر، إلا أنه يمكن امتصاصه بالعديد من السبائك المعدنية ما يجعل نقله آمناً.

تُعدّ الخلايا الوقودية fuel cells هدروجين - أكسجين وسائل مفيدة لتحويل طاقة التفاعل:

إلى طاقة كهربائية[ر: خلية الوقود]. يخرج الهدروجين والأكسجين معاً فوق إلكترودين (مسريين) يحفّزان التفاعل بينهما. والإلكتروليت (الكهرليت) يكون حمضاً أو أساساً حسب نمط الخلية. وميزة خلية الوقود أنها تنتج كهرباء والناتج الثانوي فيها الماء فقط. وتشتغل خلايا الوقود باستطاعة أعلى من الطرق التقليدية لتوليد الكهرباء ومردودها أكبر، مثال ذلك محطات توليد الطاقة التي تعمل على النفط. وقد استعملت خلايا وقود في المركبات الفضائية لأنها موثوقة، ومردودها عالٍ، وحجمها صغير نسبياً بالمقارنة مع الخلايا الكهربائية التقليدية. ويلخص المخطط (1) أهم استعمالات الهدروجين الصناعية.

 
 

 

هيام بيرقدار

الموضوعات ذات الصلة:

خلية الوقود ـ الماء ـ الهدرجة.

مراجع للاستزادة:

ـ موفق شخاشيرو، الكيمياء العامة واللاعضوية (المطبعة الجديدة، دمشق 1981ـ1982)

ـ فيليب ماثيوس، الكيمياء المتقدمة 2 العضوية واللاعضوية، ترجمة هيام بيرقدار (المنظمة العربية للتربية والثقافة والعلوم، دمشق 2000).

-   H. J. EMELEUS and A.G.SHARPE, Modern Aspects of Inorganic Chemistry, 4th edition (New Delhi UBS-1992).


التصنيف : الكيمياء و الفيزياء
النوع : علوم
المجلد: المجلد الواحد والعشرون
رقم الصفحة ضمن المجلد : 409
مشاركة :

اترك تعليقك



آخر أخبار الهيئة :

البحوث الأكثر قراءة

هل تعلم ؟؟

عدد الزوار حاليا : 1142
الكل : 40005011
اليوم : 69724

التخلية (تقانة-)

التخلية (تقانة ـ)   تقانة التخلية vacuum technology هي الحصول على خلاء في إناء مغلق وذلك بالتخلص من الهواء فيه، وقد بدأ الاهتمام بذلك حين تبينت ضرورة وجود الهواء لانتقال الصوت. كما جرى تفريغ الهواء من أداة على شكل نصفي كرة قابلين للفصل فصعب فصلهما بعد التخلية بسبب تأثير الضغط الجوي على النصفين من الخارج فقط. تعددت بعد ذلك تطبيقات هذه التقانة لتدخل في تأثير التخلص من مكونات الجو الغازية والغازات على التفاعلات الفيزيائية أو الكيمياوية مثل الامتزاز أو الأكسدة. ودخلت هذه التقانة الصناعة لأول مرة قرابة عام 1900 في تصنيع المصابيح الضوئية الكهربائية لإطالة عمرها ومنع احتراقها، تبع ذلك استعمالها للعزل الحراري عند صناعة الأوعية الحافظة للحرارة vacuum flask لحفظ السوائل في درجة حرارة ثابتة. حيث يخلى فيه الحيّز بين طبقتين زجاجيتين من الهواء، لمنع انتقال الحرارة[ر] بالحمل بين الطبقتين. كما صنعت الصمامات الإلكترونية (الأنبوب الالكتروني) المُخْلاة حتى تمنع إعاقة حركة الإلكترونات عند انتقالها بين المصعد والمهبط والذي يعد أنبوب التلفاز نموذجاً مكبراً لها. وقد أخذت هذه التقانة دفعاً قوياً مع بداية خمسينات القرن العشرين عندما استخدمت في المسرعات والطاقة النووية، وكذلك عند استعمالها للإقلال من التلوث في الصناعات الإلكترونية الدقيقة. ودخلت أخيراً صناعة الفضاء وتقليد ما يحدث فيه. استفادت هذه التقانة، كأي تقانة أخرى، من التأثير المتبادل بين التطورات العلمية وأدوات التقانة سواء من حيث تحسين المُخْليات (مضخات التخلية) وتنوعها أو من حيث مقاييس الخلاء والأجهزة المستعملة للقياس. كما استحدثت وحدات خاصة للتعبير عن جودة الخلاء أهمها التور Torr الذي يساوي الضغط الناتج عن عمود من الزئبق ارتفاعه 1mm مشتقة من التعبير عن الضغط الجوي النظامي بارتفاع عمود من الزئبق قدره 760mm، وما تزال هذه الوحدة مستخدمة مع اعتماد الباسكال، منذ عام 1971 في الجملة الدولية مكانه والذي يساوي 7.5×10-3 torr.  المُخليات (مضخات التخلية) تعد المضخة الزيتية الدوارة rotary pump أكثر المضخات استعمالاً في هذه التقانة، لكنها لا يمكن أن تؤدي إلى خلاء أفضل من 5×10-3 torr. وهي تتألف من أسطوانة تدور حول محور غير محورها بحيث يدفع الغاز الداخل من فتحة أولى ليخرج من فتحة ثانية في أثناء دوران نقطة التماس على السطح الداخلي لأسطوانة ثانية (الشكل-1)، تدعم كل فتحة عادة بصمام وحيد الاتجاه. تصنع المضخات عادة بحجوم وسعات مختلفة وتناقص سرعة إنجاز التخلية عموماً كلما اقتربنا من الحدود الدنيا، وقد تستعمل مضخات ذات مكبس مشابهة للمضخة اليدوية البسيطة. وتستعمل هذه المضخات في صناعة تغليف الأغذية وفي المثفلات وفي المختبرات العلمية كمُخلّية أولية.     تأتي المضخة الإنتثارية diffusion pump في الدرجة الثانية من حيث الاستعمال وهي تحتاج في عملها لمضخة دوارة. فهي تعمل على مبدأ انجرار الذرات مع ذرات حارة متوجهة من أعلى المضخة لتتكاثف في أسفلها (الشكل-2) وتعمل هذه المخليات بكفاية ما بين 10-3torr و10-9torr. وهذه أيضاً تصنع بسعات مختلفة. المضخة التوربينية turbo pump وتعتمد للحصول على خلاءٍ كافٍ اختلاف الضغط وانخفاضه عند مركز دوامة هوائية. ويمكن لهذه المضخة أن تعمل بدءاً من الضغط الجوي حتى خلاء يقابل قرابة 10-7torr، وهي لا تحتاج إلى مضخة دوارة للقيام بالتخلية، كما أنها أنظف من المضخة الانتثارية فهي لا تستعمل زيتاً يعد بخاره ملوِثاً. المضخة الادمصاصية sorption pump وتعتمد قدرة امتصاص سطوح بعض المواد للغازات، لذلك فهي تتعلق بكمية المادة الفعالة وإمكانية الاستفادة المتكررة منها، إذ يمكن طرد الغاز المدمص في السطح بالتسخين ومن ثم يمكن استخدام المادة مرة بعد مرة. وتتميز بعدم وجود أجزاء متحركة فيها وبأنه يمكن استعمالها على التتابع لتصل إلى خلاء ما بين 10-2torr و10-3torr. مضخة التبريد المفرط cryo pump (الشكل -3) تستفيد هذه المضخة من كون أحد سطوحها في درجة حرارة منخفضة جداً بحيث يتكاثف الغاز عليه ويسيل فيمكن إخراجه من الحيز المُخلّى. وتعمل بصورة جيدة في المجال الواقع بين 10-3torr و10-10torr وتستعمل عادة غاز الهليوم لتبريد السطح حتى درجة حرارة تقارب 15k، لكن يمكن أن تستعمل الهليوم المائع أحياناً في الدرجة 4.2k وقد تضاف مصائد باردة إلى أنظمة الضخ الأخرى تعمل وفق المبدأ نفسه. مضخة التصعيد sublimation pump تعمل في المجال  بين 10-3torr و10-11torr وتستعمل التيتانيوم في عملية التصعيد وهو يتفاعل مع الغازات الفعالة كيمياوياً من دون الغازات الخاملة.     مقاييس الخلاء vacuum gauges   تطورت هذه المقاييس في تعقيدها مع تحسن إمكان الحصول على خلاء عالٍ. ويعد مقياس ماك لويد Mcleod أول المقاييس التي تعتمد على ضغط الغاز المأخوذ من الحجرة المراد قياس الخلاء فيها ثم قياسه واستخلاصه اعتماداً على قانون الغازات العام، لذلك يسمى بالمقياس المطلق، وهو يستخدم لمعايرة المقاييس الأخرى. ومن المقاييس غير المباشرة هناك المقاييس المعتمدة على الناقلية الحرارية للغاز المتبقي مما يجعل درجة حرارة سلك مسخن تثبت عند درجة حرارة معينة. وبقياس درجة حرارة هذا السلك بوساطة مزدوجة كهرحرارية يمكن حساب ضغط الغاز. وقد تستنتج درجة حرارة السلك اعتماداً على تغير مقاومته ويدعى مقياس بيراني Pirani وتغطي مثل هذه المقاييس المجال بين 100torr و10-4torr. أما النوع الثاني من المقاييس غير المباشرة والتي تحتاج إلى معايرة عادة، المقاييس التي تعتمد على تأين (تشرد) الغاز المتبقي نتيجة تصادم الإلكترونات بذرات الغاز ولابد لهذه الإلكترونات من أن تسرع كي تستطيع التأيين، كما يعتمد احتمال تصادمها على طول المسار الحر، لذلك يوضع مغناطيس لهذا الغرض فيجعل مسار الإلكترونات حلزونياً عوضاً عن أن يكون مستقيماً. يدعى هذا المقياس مقياس Penning ويمكن أن يقيس خلاء يصل إلى 10-7torr. يستعمل المقياس السابق الإلكترونات الموجودة بصورة طبيعية في أي غاز فيحتاج الحصول على تيارات مناسبة إلى كمون تسريع يصل إلى 2kv لكن يوجد نوع آخر من المقاييس يعتمد على الإلكترونات الصادرة عن سلك مسخن وهذه تكمن عادة، إضافة إلى ما هو موجود بصورة طبيعية وتفوقها، لذلك يمكن الوصول إلى تيارات أيونية مناسبة بسهولة أكبر وهي تعمل في عدة مجالات من الخلاء اعتماداً على ذلك، فيمكن أن يكون المجال مثلاً ما بين 10-2torr و10-7torr كما يمكن التحكم بهندسة السلك والمجمع لتصبح قادرة على قياس خلاء يصل إلى  10-11torrكما في مقياس بيرد ـ ألبرت Bayard-Albert. تطبيقات تقانة الخلاء مكَّن الحصول على خلاء عال في الفيزياء والكيمياء من دراسة ظواهر جديدة لم تكن لتظهر لولا وجود الخلاء، مثل قياس طاقة الامتزاز على السطوح وترابطها معها، كما أن تطوير المجهر الإلكتروني اعتمد على جودة الخلاء من خلال إمكانية تسريع الإلكترونات لتصل إلى طاقات عالية، إذ يعتمد الوصول إلى طاقات عالية على عدم تصادم الإلكترون المسرع ولمسافة طويلة مع ذرات أو جسيمات أخرى، وهذا يتحقق في الخلاء العالي. ففي حين يحتوي السنتمتر المكعب من الهواء تحت الضغط الجوي النظامي وفي درجة الحرارة العادية قرابة 2 × 1910 جُزيئة، فإن هذا العدد سينخفض بمقدار مليون مرة أو أكثر حسب جودة الخلاء، ومن ثم فإن احتمال التصادم سيقل بهذا القدر. وما ينطبق على الإلكترونات ينطبق على الذرات المبخّرة في عملية التغشية (التلبيس) تحت الخلاء التي تستعمل في تغشية العدسات والعناصر الضوئية المختلفة. وتأتي صناعة التغشية بعد صناعة الصمامات والمصابيح من حيث الأهمية التجارية. ويستخدم المبدأ نفسه للإقلال من ضياع حزم الجسيمات في المسرعات الضخمة المستعملة في الفيزياء النووية وفيزياء الجسيمات التي تقلد ما يحدث داخل النجوم سواء من حيث تطورها أو من حيث طاقة أشعتها التي تصلنا إلى الأرض كاشفة لنا ماهية مصدرها وما تعانيه خلال سيرها حتى تصل الأرض. ولم يستطع الإنسان  الوصول إلى خلاء يقارب الخلاء بين النجوم إلا حديثاً. فأمكنه تفسير بعض الظواهر الفيزيائية الفلكية. وتستعمل التخلية عند الضخ على سائل ما لتبريد هذا السائل. إن بخار السائل هو جسيمات ذات طاقة عالية بالمقارنة مع جسيمات السائل نفسه وهي القادرة على ترك السائل لهذا السبب، لذلك عندما نخلي هذه الجسيمات فوق السائل فكأننا نخلصه من جزء الجسيمات الحارة فيبرد. وقد يستمر التبريد حتى يبدأ السائل بالتجمد، وتحدث هذه عند قيم محددة لدرجة الحرارة والضغط لذلك تستخدم عادة في المعايرة. ويكاد لا يخلو مختبر من مختبرات الفيزياء أو الكيمياء من مضخة تخلية. أما في صناعة الإلكترونيات فهي تخدم غرضاً مزدوجاً يتمثل بنظافة الجو الذي تجري فيه الصناعة والتحكم في مكونات هذا الجو لإحداث تفاعلات كيمياوية محددة على سطوح الركازة التي تتوضع عليها العناصر الإلكترونية من ترانزيستورات [ر. أنصاف النواقل] ودارات مدمجة، خاصة عندما وصلت هذه الصناعة إلى مستوى من الدقة بحيث تؤثر في عمل الدارة وجود جسيمات من أبعاد تقل كثيراً عن المكرومتر. وينطبق مثل هذا على أفران التعدين والصلب وتدخل مسألة التخلص من الجراثيم والهواء بصورة مباشرة في الزراعة عن طريق حفظ الأغذية تحت الخلاء، كما دخلت التخلية مجال التحكم الآلي في رفع الأشياء بلطف، كما استعملت في المكانس الكهربائية اللطيفة.   فوزي عوض   الموضوعات ذات الصلة:   انتقال الحرارة ـ التبريد ـ التبريد المفرط (علم ـ).   مراجع للاستزادة:   - G.K.WHITE, Experimental Techniques in Low-Temperature Physics (Oxford Press 1968).
المزيد »