logo

logo

logo

logo

logo

الحقل

حقل

Field - Champ

الحقل

 

الحقل field هو حلقة[ر] واحدية مثل (ل، +، ×) واحدها لايساوي صفرها، وكل عنصرٍ مغايرٍ لصفرها، أيْ من المجموعة ل= ل- {}، يكون قَلوباً فيها. وإذا كان الضرب المعرَّف على الحقل ل تبديلياً سمي ل عندها حقلاً تبديلياً.

خواص أساسية ونتائج

أ ـ إذا كان ب ' ل، جـ ' ل فللمعادلة ب × س= جـ حل وحيد س = ب-1×جـ في ل، وللمعادلة ع × ب = جـ حل وحيد

ع = جـ × ب-1 في ل.

ب ـ لا توجد في الحقل قواسم للصفر.

جـ ـ إذا كان ل حقلاً فإن ل زمرة بالنسبة للضرب. تسمى (ل، ×) الزمرة الضربية للحقل ل.

د ـ تكون الزمرة ل دوارة عندما يكون الحقل ل تبديلياً ومنتهياً.

هـ ـ لا يوجد في الحقل سوى مثالين اثنين فقط هما الحقل نفسه والمثالي الصفري.

و ـ كل حقل تبديلي منطقة صحيحة، وكل منطقةٍ صحيحةٍ منتهيةٍ حقل تبديلي.

ز ـ مميز الحقل هو مميزه كحلقة واحدية، ويكون هذا المميز إما صفراً أو عدداً أولياً.

ح ـ حلقة الحدوديات ل [س] ذات المتغير س على الحقل التبديلي ل هي حلقة المثاليات الرئيسة، وذلك بالنسبة لجمع الحدوديات وضربها.

أمثلة

أ ـ كل من الحلقات ع، ح، ق حقل تبديلي، بينما الحلقة ص ليست حقلاً.

ب ـ رباعيات هاملتون: يسمى كل عنصر (أ1 ، أ2 ، أ3 ، أ4) من ح4 رباعية ويكتب بشكل وحيد على النحو:

أ1ي+ أ2 سـ + أ3عـ + أ4صـ، حيث:

 ي= (1، ، ، )، سـ = (، 1، ، )، عـ = (،، 1، )، صـ = (، ، ، 1)، ب (س1، س2، س3، س4) = (ب س1، ب س2، ب س3، ب س4).

تجمع الرباعيات بالطريقة المألوفة، وتضرب بالطريقة المألوفة استناداً إلى الجدول:

×

ي

سـ

عـ

صـ

ي

ي

سـ

عـ

صـ

سـ

سـ

- ي

صـ

- عـ

عـ

عـ

- صـ

- ي

سـ

صـ

صـ

عـ

- سـ

- ي

 

وإذا كانت الرباعية أ = أ1 ي+ أ2 سـ+ أ3 عـ+ أ4 صـ مغايرة للصفر فإن الرباعية

مقلوب أ في ح4، حيث يكون:

ومنه (ح4، +، ×) حقل غير تبديلي.

تتمات

أ ـ تعريف: يقال عن المجموعة الجزئية ج من الحقل (ل، +، ×) إنها حقل جزئي إذا كانت ج مؤلفة من عنصرين مختلفين (اثنين على الأقل) وكان:

(1) س-ع ' ج لكل  عنصرين س، ع، من ج.

(2) س × ع-1 ' ج لكل عنصرين س، ع من ج = ج - {}.

ب ـ التشاكل الحقلي: هو تشاكل حلقي مثل تا: ل ¬ لَ ، منطلقه حقل ل ومستقره حقل لَ، بحيث تكون صورة واحد الحقل ل، وفق تا، هي واحد الحقل لَ.

يتصف التشاكل الحقلي تا بأنه متباين دوماً. فإذا كان تا غامراً سمي تماثلاً حقلياً. وعلى هذا فإن الحقل ل يماثل الحقل الجزئي تا(ل) من لَ.

عبد الواحد أبو حمدة 

مراجع للاستزادة:

 

- N.Bour baki, Eéléde mathématique (Algebre).

- A.Q.Kurosh, Lectures on general algebra).


التصنيف : الرياضيات و الفلك
النوع : علوم
المجلد: المجلدالثامن
رقم الصفحة ضمن المجلد : 406
مشاركة :

اترك تعليقك



آخر أخبار الهيئة :

البحوث الأكثر قراءة

هل تعلم ؟؟

عدد الزوار حاليا : 1815
الكل : 55815427
اليوم : 53305

غادي (أسرة-)

غادي (أسرة ـ)   أسرة غادي Les Gaddi أسرة فنيّة فلورنسيّة مشهورة. كان غادو غادي Gaddo Gaddi الأب المولود عام 1260، والمتوفى عام 1333 مصوّراً وفسيفسائياً. وقد ربط الناقد فازاري Vasari بينه وبين تشيمابو Cimabue وجيوتو Giotto، ونسب إليه مع نقاد آخرين أعمال الفسيفساء في قبة فلورنسا «تتويج العذراء»، وفي بيت العماد Baptistère «مذبحة الأبرياء، والعشاء الأخير، واعتقال يسوع، ورقصة سالومي، وشفاء المقعد». وقد رأى فيه لونغي R.Longhi «روحاً عملاقة، ثائرة ومضطربة، يخالطها طابع باروكي».  أما ابنه تاديو غادي Taddeo Gaddi المولود عام 1300 والمتوفى عام 1366 فكان تلميذاً مفضلاً لدى جيوتو وابنه بالمعمودية. اشتغل معه أربعاً وعشرين سنة، وحل محله بعد وفاته على الرغم من افتقاره إلى نظرة أستاذه الجمالية الشاملة والعميقة، واستمرت قيادته للتصوير الفلورنسي ثلاثة عقود.
المزيد »